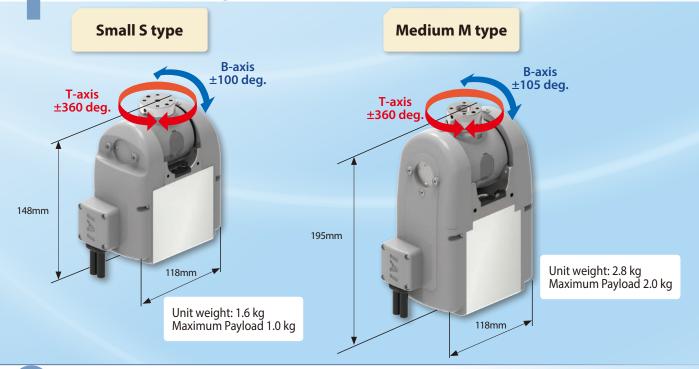


Wrist Unit W

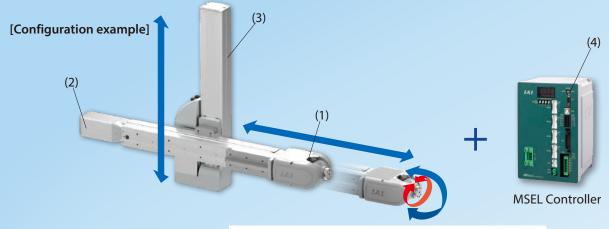

www.intelligentactuator.com

Rotating joint 2-axis unit

Wrist Unit is now available

IAI's Unique design makes the parts light and compact.

Equipped with a Battery-less Absolute Encoder as Standard

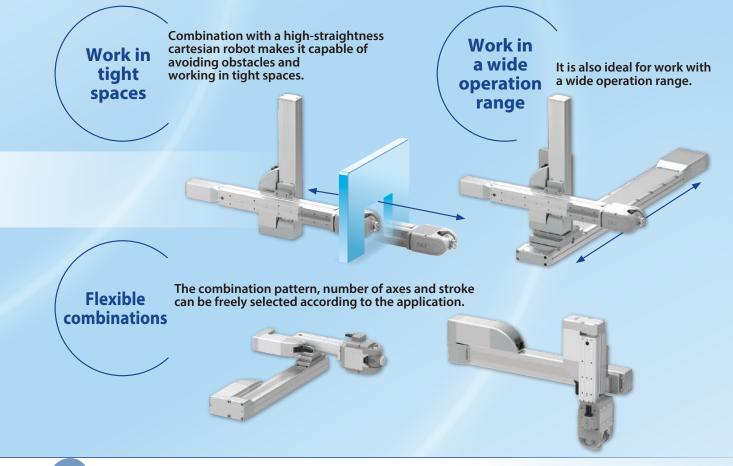


Ideal for reducing the cost of equipment.

Low cost compared to 6-axis articulated robots.

Diagonal approaches and tip swiveling, possible until now only with vertically articulated robots, can now be performed with the minimum required axis configuration.

Ideal for reducing the cost of equipment.



 (1) Wrist Unit:
 WU-S

 (2) Table Type:
 RCP6-TA6C
 Stroke: 320 mm

 (3) Slider Type:
 RCP6-SA7R
 Stroke: 300 mm

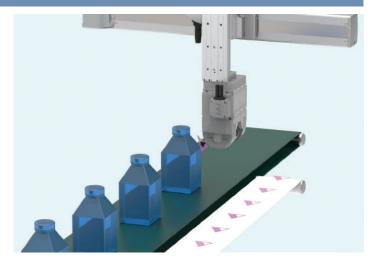
 (4) Controller:
 MSEL

Orthogonal axes and interpolation commands are possible

(2) When connecting Wrist Unit and 3-axis or more actuator (*2)

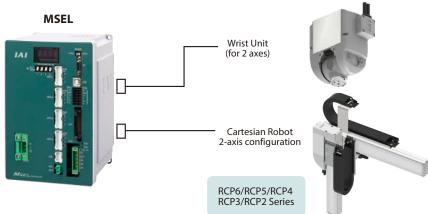
Single Axis/Cartesian Robot (up to 2 axes)

Wrist Unit (for 2 axes)


Single Axis/Cartesian Robot (up to 6 axes)

Application Examples

■ Bottle labeling equipment

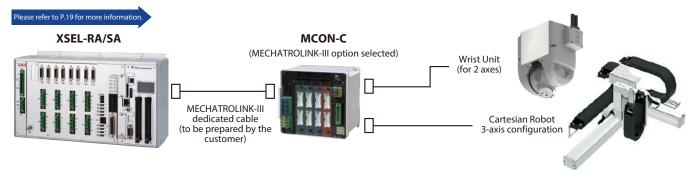

This device affixes labels to bottles. Adjusts the angle to the labeling surface on the B-axis and rotates the label on the T-axis to change the orientation.

Controller connection example

"Wrist Unit + ROBO Cylinder 2-axis configuration" can be controlled with a single MSEL controller.


Please refer to P.17 for more information

Automotive connector inspection equipment


This device inspects the external view of connectors for automobiles, using a camera.

The Wrist Unit rotates the connector for inspection from various angles.

Controller connection example

"Wrist Unit + ROBO Cylinder 3-axis configuration" can be controlled with the MCON controller, using XSEL-RA/SA expanded motion control.

WU Series List Туре Compact type Medium type Model WU-S WU-M External view **Axis configuration** B-axis (wrist swing) T-axis (wrist rotation) B-axis (wrist swing) T-axis (wrist rotation) Operation range ±100 deg. ±360 deg. ±105 deg. ±360 deg. Max. torque *1 0.65N·m 0.65N·m 1.65N·m 1.65N·m Max. allowable moment of inertia *2 0.0085kgm² 0.0075kgm² 0.015kgm² 0.0165kgm² Max. load weight 1kg Independent operation 900 deg/s 750 deg/s 1200 deg/s 1200 deg/s Simultaneous Max. speed *3 operation of the 600 deg/s 600 deg/s 600 deg/s 600 deg/s B- and T-axes Without load torque *4 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) Max. acceleration/ deceleration With 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) load torque *4 Motor type 28□ Stepper motor 28□ Stepper motor 35□ Stepper motor 35□ Stepper motor **Unit weight** 1.6kg 2.8kg Reference page P.13 P.15

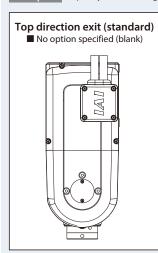
Model Specification Items WA PM₁ WU Encoder Type Applicable Controllers Series Туре Cable Length Options Battery-less Absolute Compact type None WA Cable exit direction (Right) М Medium type 1m Cable exit direction (Bottom) 3m Cable exit direction (Left) Specified length AC1.5 Actuator's pigtail cable length change MSEL Robot cable VC With air fitting Cable (air fitting) in opposite WCS With wiring collar

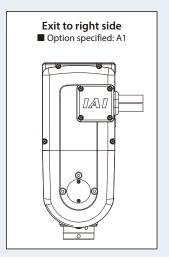
^{*1} Indicates the maximum torque at low speed. The output torque varies with the speed.

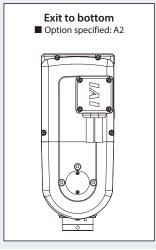
^{*2} Indicates the maximum moment of inertia in rotation. Value when the acceleration is 0.3 G.

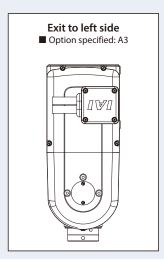
^{*3} Maximum set speed with no load.

^{*4} When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.




Options


Cable exit direction


Model A1 / A2 / A3

Specify when changing the Actuator's pigtail cable exit direction.

Actuator's pigtail cable length change

Model AC1.5

This option extends the length of the Actuator's pigtail cable exiting the actuator body to 1.5 m. (Standard length is 0.2 m) When this option is selected, the maximum cable length between the actuator and controller will be 18 m (X18, R18).

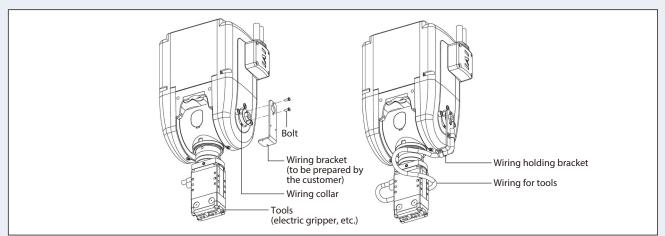
With air fitting

Model **VC**

This option allows attachment of an air fitting (ϕ 6) for connecting pneumatic devices such as vacuum pads to the side of the main body. It is mounted on the same side as the Actuator's pigtail cable outlet. Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

With wiring collar

Model


WCS

Description

When using electric grippers or similar wiring is made easy by using the wiring collar.

Use the wiring collar as the base to which the wiring bracket (to be prepared by the customer) is to be attached.

Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Cable (air fitting) in opposite position

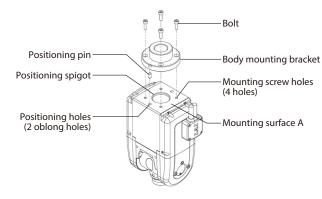
Model

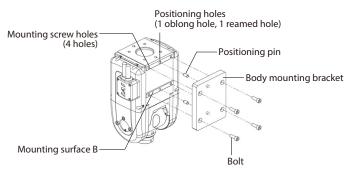
CVR

Description

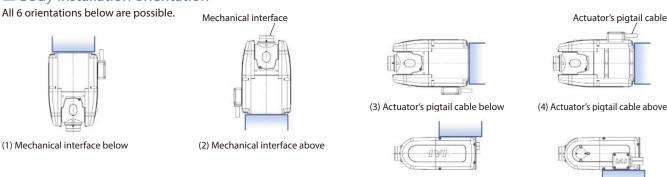
This option allows the Actuator's pigtail cable outlet, air fitting, and wiring collar (optional) to be mounted on the other side (opposite position). Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

(6) Mounting surface B below


Mounting Method


Body mounting method

The body mounting surface should be a machined surface or a plane with similar accuracy.


The actuator has screw holes and positioning holes for body mounting on the top (mounting surface A) and side (mounting surface B). For details on positions and dimensions, refer to the product pages.

(1) When using mounting surface A (Thread depth WU-S: M4 through (screw depth: 6) / WU-M: M5 through (screw depth: 10) (2) When using mounting surface B (Thread depth WU-S: M4 depth 8 / WU-M: M5 depth 10)

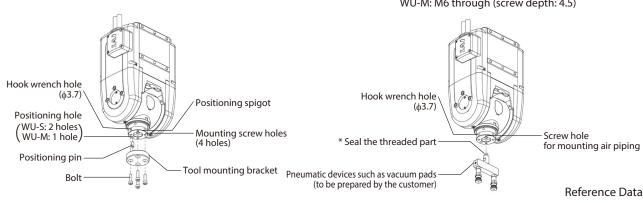
Body installation orientation

■ Tool mounting method

The unit is provided with screw holes for bracket mounting to the body tip (mechanical interface), screw holes for air piping mounting, and positioning holes. Refer to the dimensions (WU-S: P.12, WU-M: P.14) for details regarding the position and dimensions.

Do not apply excessive force to the output shaft when tightening bolts or air piping threads. The mechanical interface is provided with holes for a hook wrench. Use these to fix the output shaft in the rotating direction.

(1) When using bracket mounting screws


(Thread depth WU-S: M4 depth 6 / WU-M: M4 through (screw depth: 6)

(2) When using air piping mounting screws

(5) Mounting surface B above

Seal the threaded part of the air piping with sealing tape, etc.

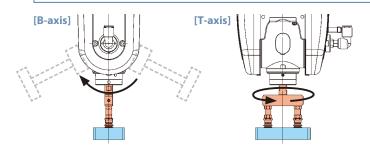
(Thread depth WU-S: M6 through (screw depth: 4.5) / WU-M: M6 through (screw depth: 4.5)

Reference Data

Model Selection Process

Follow steps 1 through 4. For a selection example, refer to the following pages.

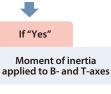
Step 1


Check the weight of the transported object

Step 2

Check the moment of inertia

The allowable moment of inertia of the Wrist Unit decreases to the extent that load torque is applied to the B- and T-axes. First, calculate the load torque and obtain the corrected allowable moment of inertia.



"Formulae for calculating moment of inertia of typical shapes" are on page 12.

Check the presence of load torque on the B- and T-axes

≤

 \leq

Corrected allowable moment of inertia for compact and medium types

* It varies with the speed and acceleration/deceleration.

Moment of inertia applied to B- and T-axes

If "None"

Allowable moment of inertia for compact and medium types

* It varies with the speed and acceleration/deceleration.

Step 3

Check the allowable dynamic thrust load

Make sure that the thrust load (load perpendicular to the mounting surface) does not exceed the allowable dynamic thrust load.

Step 4

Check the allowable dynamic load moment

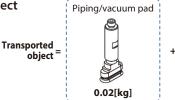
Make sure that the load moment does not exceed the allowable dynamic moment.

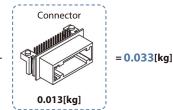
Reference Data

Model Selection Example: Automotive Connector Inspection Equipment

The model selection example given is based on the application example "Automotive connector inspection equipment" (P. 3).

Automotive connector inspection equipment Inspection camera Vacuum pad Wrist Unit Connector (workpiece)


[Overview]


This device inspects the external view of connectors for automobiles, using a camera. The Wrist Unit rotates the connector for inspection from various angles.

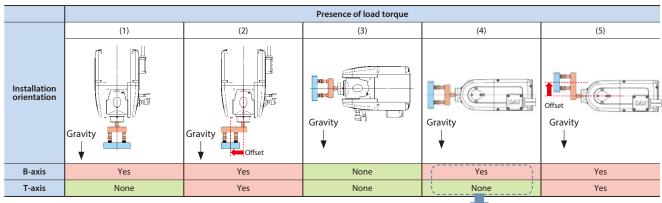
Step 1 Check the weight of the transported object

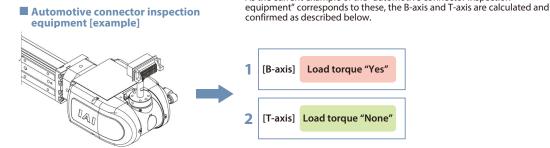
<Weight of transported object = weight of tool
+ weight of workpiece>

	Maximum load weight
WU-S: Compact type	1kg
WU-M: Medium type	2kg

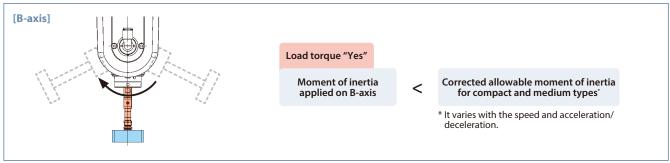
Both WU-S (compact) and WU-M (medium) can be used

As the current example of the "automotive connector inspection


Step 2 Check the moment of inertia

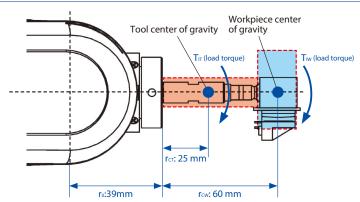

Check the presence of load torque on the B- and T-axes

- → Calculate the load torque and obtain the corrected allowable moment of inertia. Then calculate the moment of inertia and check that it does not exceed the allowable value.
- Calculate the moment of inertia and confirm that it is less than the allowable moment of inertia


■ Conditions in which load torque is applied

■ 1. Check B-axis

(1) Calculating load torque T₁


- T_{IT}: Load torque due to tool weight [N⋅m]
- T_M: Load torque due to workpiece weight [N·m]
- m_T: Tool weight [kg]
- m_w: Workpiece weight [kg]
- g: Gravitational acceleration [m/s²]
- ro: Mounting surface distance [mm]
- rc: Tool center mass location [mm]
- r_{cw}: Workpiece center mass location [mm]

- $=m_{T^{\bullet}}g(r_{0}+r_{CT})\times 10^{-3}+m_{W^{\bullet}}g(r_{0}+r_{CW})\times 10^{-3}$
- $=0.02\times9.8\times(39+25)\times10^{-3}+0.013\times9.8\times(39+60)\times10^{-3}$

=0.025[Nm]

Calculation result

(2) Calculating the allowable moment of inertia correction factor Cj

T_{max}: Output torque (right table) [Nm] T_i: Load torque calculation result (1)

[Operating conditions of the Wrist Unit]

B-axis rotation Speed: **600** [deg/s] Acceleration: **0.3** [G]

First, calculate with the value for the compact type (S)

$$C_{j} = \frac{T_{max} - T_{1}}{T_{max}}$$

$$= \frac{0.58 - 0.025}{0.58}$$

=0.96

Calculation result

■ Output torque by speed [Nm]

WU-S: Compact type

Speed	B-axis	T-axis	
deg./s	D-dXIS	I-dxIS	
0	0.65	0.65	
150	0.65	0.65	
300	0.62	0.62	
450	0.6	0.6	
600	0.58	0.58	
750	0.52	0.52	
900	0.45	0.45	
1050	0.45	0.45	
1200	0.45	0.45	

WU-M: Medium type

Speed deg./s	B-axis	T-axis
0	1.65	1.65
150	1.65	1.65
300	1.65	1.65
450	1.65	1.65
600	1.58	1.58
750	1.36	1.36
900	1.14	1.14
1050	0.96	0.96
1200	0.79	0.79

(3) Calculating the corrected allowable moment of inertia J_{tl}

$J_{tl}=J_{max}C_{j}$ (kgm²)

 J_{max} : Allowable moment of inertia (right table) [kgm²] G: Allowable moment of inertia correction factor calculation result (2)

Jt=0.008×0.96

=0.0077

Calculation result

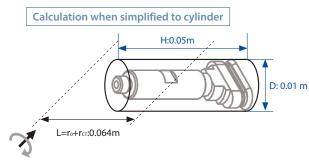
■ Allowable moment of inertia by speed/acceleration [kgm²]

WU-S: Compact type

Speed B-axis T-axis Acceleration/deceleration deg./s 0.3G 0.3G 0 0.008 0.0035 150 0.008 0.0035 300 0.008 0.0035 450 0.008 0.0035 600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035 1200 0.0025		1				
Acceleration/deceleration Acceleration/deceleration	Speed	B-axis	T-axis			
0 0.008 0.0035 150 0.008 0.0035 300 0.008 0.0035 450 0.008 0.0035 600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035	Speed	Acceleration/deceleration				
150 0.008 0.0035 300 0.008 0.0035 450 0.008 0.0035 600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035	deg./s	0.3G	0.3G			
300 0.008 0.0035 450 0.008 0.0035 600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035	0	0.008	0.0035			
450 0.008 0.0035 600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035	150	0.008	0.0035			
600 0.008 0.0035 750 0.0035 900 0.0035 1050 0.0035	300	0.008	0.0035			
750 0.0035 900 0.0035 1050 0.0035	450	0.008	0.0035			
900 0.0035 1050 0.0035	600	0.008	0.0035			
1050 0.0035	750		0.0035			
	900		0.0035			
1200 0.0025	1050		0.0035			
0.0023	1200		0.0025			

WU-M: Medium type

Speed B-axis Acceleration/de		, .	
Acceleration/deceleration deg./s 0.3G 0.3G 0 0.0150 0.0126 150 0.0150 0.0126 300 0.0118 0.0072 450 0.0055 0.0054 600 0.0055 0.0054 750 0.0054 900 0.0036	Spood	B-axis	T-axis
0 0.0150 0.0126 150 0.0150 0.0126 300 0.0118 0.0072 450 0.0055 0.0054 600 0.0055 0.0054 750 0.0054 900 0.0036	Speed	Acceleration/	deceleration
150 0.0150 0.0126 300 0.0118 0.0072 450 0.0055 0.0054 600 0.0055 0.0054 750 0.0054 900 0.0036	deg./s	0.3G	0.3G
300 0.0118 0.0072 450 0.0055 0.0054 600 0.0055 0.0054 750 0.0054 900 0.0036	0	0.0150	0.0126
450 0.0055 0.0054 600 0.0055 0.0054 750 0.0054 900 0.0036	150	0.0150	0.0126
750 0.0054 900 0.0036	300	0.0118	0.0072
750 0.0054 900 0.0036	450	0.0055	0.0054
900 0.0036	600	0.0055	0.0054
	750		0.0054
1050	900		0.0036
0.0036	1050		0.0036
1200 0.0036	1200		0.0036

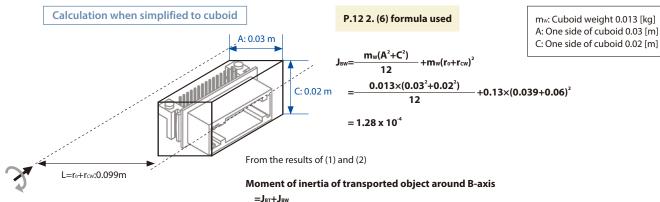

(4) Checking the moment of inertia of the transported object

Using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia (4) \leq (3) obtained in (3).

Points

Calculations can be made easier by positing simplified shapes for transported objects such as tools and workpieces.

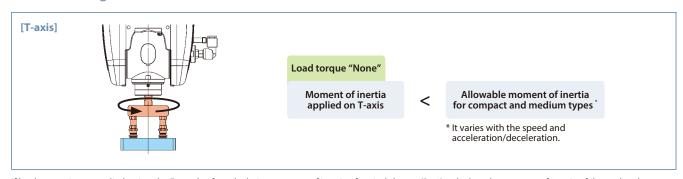
(1) Moment of inertia of piping/vacuum pad: JBT



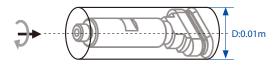
P.12 2. (5) formula used

m_T: Cylinder weight 0.02 [kg] D: Cylinder diameter 0.01 [m] H: Cylinder length 0.05 (m)

$$\begin{split} J_{\text{BT}} &= \frac{m_{\text{T}}(\frac{D^2}{4} + \frac{H^2}{3})}{4} + m_{\text{T}}(r_0 + r_{\text{CT}})^2 \\ &= \frac{0.02 \times (\frac{0.01^2}{4} + \frac{0.05^2}{3})}{4} + 0.02 \times (0.039 + 0.025)^2 \\ &= 8.62 \times 10^{-5} \end{split}$$


(2) Moment of inertia of connector: JBW

 $= 8.62 \times 10^{-5} + 1.28 \times 10^{-4}$


=2.1×10⁻⁴

2. Checking T-axis

If load torque is not applied, using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia.

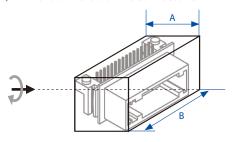
(1) Moment of inertia of piping/vacuum pad: J_{TT}

P.12 2. (1) formula used

$$J_{TT} = \frac{m_{T} \times D^{2}}{8}$$

$$= \frac{0.02 \times 0.01^{2}}{8}$$

$$= 2.50 \times 10^{-7}$$


m₁: Cylinder weight 0.02 [kg] D: Cylinder diameter 0.01 [m]

Usable, as it is less than the corrective allowable moment of

inertia obtained in (3)

(2) Moment of inertia of the connector: JTW

P.12 1. (3) formula used

$$J_{TW} = -\frac{m_W(A^2 + B^2)}{12}$$

$$= -\frac{0.013 \times (0.03^2 + 0.05^2)}{12}$$

$$= 3.68 \times 10^{-6}$$

m_w: Cuboid weight 0.013 [kg] A: One side of cuboid 0.03 [m] B: One side of cuboid 0.05 [m]

From the results of (1) and (2)

Moment of inertia of transported object around T-axis

 $= J_{TT} + J_{TW}$

=2.50×10⁻⁷+3.68×10⁻⁶

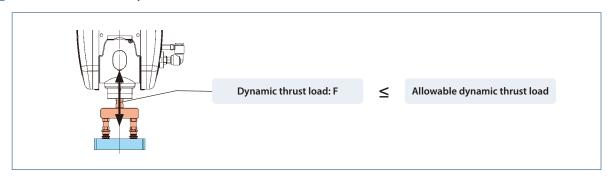
 $=3.9\times10^{-6}[kgm^{2}]$

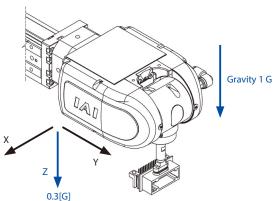
From the allowable moment of inertia (table below), we see that WU-S (compact) can be used

[Operating conditions of the Wrist Unit]

T-axis rotation speed: **600** [deg/s] Acceleration: **0.3** [G]

■ Allowable moment of inertia by speed/acceleration [kgm²]


WU-S: Compact type


Coood	B-axis		T-a	xis
Speed		Acceleration	deceleration/	
deg./s	0.3G	0.7G	0.3G	0.7G
0	0.0085	0.0065	0.0075	0.0035
150	0.0085	0.0065	0.0075	0.0035
300	0.0085	0.005	0.0065	0.0035
450	0.0085	0.005	0.0065	0.0025
600	0.0085	0.005	0.0065	0.0025
750		0.005	0.0065	0.0025
900			0.0065	0.0025
1050			0.0065	0.0025
1200			0.0065	0.0025

WU-M: Medium type

Cmaad	B-axis		t T-a	xis
Speed		Acceleration	deceleration	ı
deg./s	0.3G	0.7G	0.3G	0.7G
0	0.0150	0.0145	0.0165	0.0126
150	0.0150	0.0145	0.0165	0.0126
300	0.0150	0.0127	0.0165	0.0090
450	0.0099	0.0045	0.0126	0.0063
600	0.0090	0.0036	0.0108	0.0054
750		0.0036	0.0099	0.0054
900		0.0036	0.0099	0.0045
1050			0.0081	0.0045
1200			0.0081	0.0045

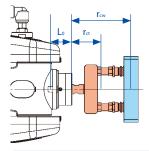
Step 3 Check the allowable dynamic thrust load

 $F=(m_T+m_W)\cdot(a+g)\cdot9.8[N]$

m_i: Tool weight 0.02 [kg] m_w: Workpiece weight 0.013 [kg] g: Gravitational acceleration 1.0 [G] a: Travel acceleration of Z-axis 0.3 [G]

 $F=(0.02+0.13)\times(0.3+1.0)\times9.8$ $=0.033\times1.3\times9.8$ =0.42[N]

From the allowable dynamic thrust load (table below), we see that $$\operatorname{WU-S}$$ (compact) can be used


■ Allowable dynamic thrust load

	Allowable thrust load
WU-S: Compact type	330N
WU-M: Medium type	450N

Step 4 Check the allowable dynamic load moment

Dynamic load moment: M ≤ Allowable dynamic load moment

$M=m_{T}\cdot a\cdot 9.8(L_0+r_{CT})\times 10^{-3}+m_{W}\cdot a\cdot 9.8(L_0+r_{CW})\times 10^{-3}$ [Nm]

mr: Tool weight 0.02 [kg]
mw: Workpiece weight 0.013 [kg]
a: Travel acceleration of X-axis 0.3 [G]
Lo: Load center of mass position
WU-S (Compact) 17.5 [mm]
WU-M (Medium) 21.5 [mm]
rcr: Tool center mass location 25 [mm]
rcw: Workpiece center mass location
60 [mm]

M=0.02×0.3×9.8×(17.5+25)×10⁻³ +0.013×0.3×9.8×(17.5+60)×10⁻³ =0.025+0.030

=0.055 [Nm]

From the allowable dynamic moment (table below), we see that WU-S (compact) can be used

■ Allowable dynamic load moment

	Allowable dynamic load moment
WU-S: Compact type	1.4Nm
WU-M: Medium type	4.2Nm

WU-S (compact) can be used, as seen from the results of steps 1 to 4

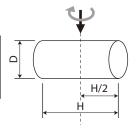
Formulae for calculating moment of inertia of typical shapes

■ 1. When the rotational axis passes through the center of the object

(1) Moment of inertia of cylinder 1

* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)

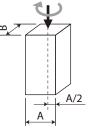
<Formula $> I = M \times D^2/8$


Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (unit: kg) Cylinder diameter: D (m)

(2) Moment of inertia of cylinder 2

<Formula> I = M x (D $^{2}/4 + H^{2}/3) / 4$

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (kg) Cylinder diameter: D (m) Cylinder length: H (m)



(3) Moment of inertia of prism 1

* The same formula can be applied irrespective of the height of the prism (also for rectangular plate)

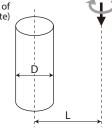
<Formula> I = M x (A 2 + B 2) / 12

Moment of inertia of prism: I (kg·m²) One side of prism: A (m) One side of prism: B (m)

2. When the center of the object is offset from the rotational axis

(4) Moment of inertia of cylinder 3

* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)


<Formula>I = M x D 2 /8 + M x L 2

Moment of inertia of cylinder: I (kg·m²)

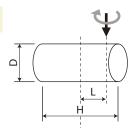
Cylinder weight: M (kg)

Cylinder diameter: D (m)

Distance from rotational axis to center: L (m)

(5) Moment of inertia of cylinder 4

<Formula>I = M x (D $^{2}/4 + H^{2}/3) / 4 + M x L<math>^{2}$

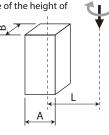

Moment of inertia of cylinder: I (kg·m²)

Cylinder weight: M (kg)

Cylinder diameter: D (m)

Cylinder length: H (m)

Distance from rotational axis to center: L (m)


(6) Moment of inertia of prism 2

* The same formula can be applied irrespective of the height of the prism (also for rectangular plate)

<Formula>I = M x (A 2 + B 2) / 12 + M x L 2

Moment of inertia of prism: I (kg·m²)
Prism weight: M (kg)
One side of prism: A (m)
One side of prism: B (m)

Distance from rotational axis to center: L (m)

type

■ Model Specification Items WU

Type S: Compact

Type

WA Encoder Type

WA: Battery-less Absolute

PM₁

PM1: MSEL

Applicable Controllers

OIN

Cable Length

X□□: Specified Length R□□: Robot Cable

P:1m S:3m M:5m

Refer to Options table below.

Options

* Does not include a controller

* Please refer to P.4 for more information about the model specification items.

Please refer to P.6 for more information on the installation method and orientation

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

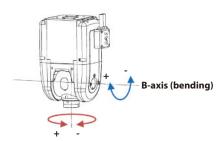
(Note 1) Shows maximum set speed with no load.

(Note 2) When the rotational axes of the B-axis and T-axis are horizontal I when the rotational axes of the B-axis and 1-axis are norizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications							
			Max. speed	d (Note 1) (deg/s)		Max. acceleration	n/deceleration (G)
Model	Axis configuration	Operation range (deg.)	Independent operation	Simultaneous operation of the B- and T-axes	Max. payload (kg)	Without load torque (Note 2)	With load torque (Note 2)
WU-S-WA-PM1- ① - ②	B-axis (wrist swing)	±100	750	600	1	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
WU-S-WA-PMIT- UI - Ø	T-axis (wrist rotation)	±360	1200	600	1	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
Legend: 1 Cable length 2 Options							*1 G ≈ 9807 deg/s

2 Options

Name	Option code	Reference page
Cable exit direction (Right)	A1	See P.5, P.14
Cable exit direction (Bottom)	A2	See P.5, P.14
Cable exit direction (Left)	А3	See P.5, P.14
Actuator's pigtail cable length change	AC1.5	See P.5, P.14
Cable (air fitting) in opposite position	CVR	See P.5, P.14
With air fitting	VC	See P.5, P.14
With wiring collar	WCS	See P.5, P.14


① Cable Length <per axis *1>

Type	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) to X10 (10m)
Specified length Robot cable	X11(11m) to X15(15m)
	X16(16m) to X20(20m) *2
	R01(1m) to R03(3m)
	R04(4m) to R05(5m)
	R06 (6m) to R10 (10m)
	R11(11m) to R15(15m)
	R16(16m) to R20(20m) *2

Cable between actuator and controller.

- *1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.
- *2 When Actuator's pigtail cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

Name and Coordinates of Each Axis

T-axis (turning)

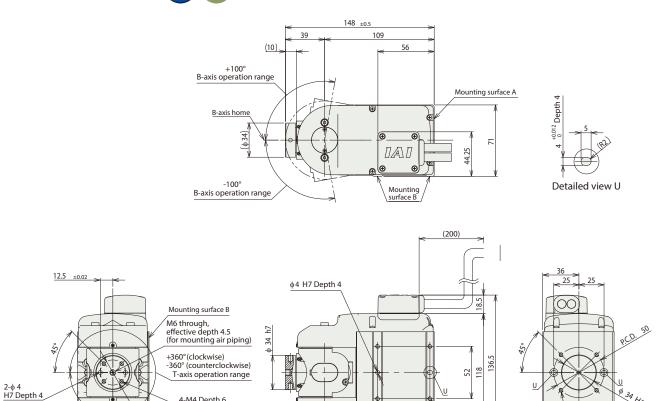
Actuator Specifications

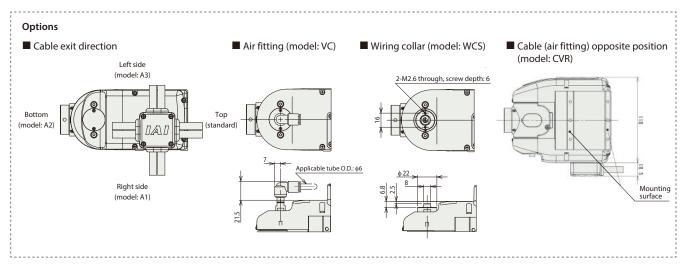
ltem	Description				
item	B-axis (wrist swing)	T-axis (wrist rotation)			
Drive system	Stepper motor + timing belt	Stepper motor + timing belt + bevel gear			
Positioning repeatability	±0.015 deg.	±0.15 deg.			
Lost motion	0.06 degrees	0.4 degrees			
Allowable dynamic thrust load *1	330N				
Allowable dynamic load moment *1	1.4N·m				
Unit weight	1.6kg				
Brake retaining torque *2	0.96N·m	0.96N·m			
Ambient operating temperature, humidity	0~40°C, 85% RH or less (Non-condensing)				

^{*1} Using the unit with a load exceeding the values above leads to reduced service life and/or damage.

^{*2} Equipped with brake as standard.

Dimensions


CAD drawings can be downloaded from our website. www.intelligentactuator.com



4-M4 Depth 6

T-axis home position

4-M4 Depth 8

4-M4 through, screw depth: 6

4.25

Name External view Max. number of Power su		Power supply	Control method					Maximum number of	Reference	
Name	external view	connectable axes		Positioner	Pulse-train	Program	Network * selection		positioning points	
MSEL-PC/PG		4	Single phase 100 to 230 V AC	-	-	•	DeviceNet EtherCAT.	CC-Link Ether Net /IP	30000	See P.15

Battery less Absolute

Medium type

24_v Stepper Motor

■ Model Specification Items WU Series

Type

M: Medium

Туре

WA Encoder Type

WA: Battery-less Absolute

PM₁ Applicable Controllers PM1:MSEL

Cable Length

N : None P:1m

M:5m X□□ : Specified Length R□□ : Robot Cable

Options Refer to Options table below.

* Does not include a controller

* Please refer to P.4 for more information about the model specification items.

Please refer to P.6 for more information on the installation method and orientation.

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

(Note 1) Shows maximum set speed with no load.

(Note 2) When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications

		0	Max. speed	l ^(Note 1) (deg/s)	May mayland	Max. acceleration/deceleration (G)	
Model Axis configuration		Operation range (deg.)	Independent operation	Simultaneous operation of the B- and T-axes	Max. payload (kg)	Without load torque (Note 2)	With load torque (Note 2)
	B-axis (wrist swing)	±105	900	600	2	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
WU-M-WA-PM1- ① - ②	T-axis (wrist rotation)	±360	1200	600	2	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)

Legend: 1 Cable length 2 Options

 $*1 G = 9800 deg/s^2$

2 Options

Name	Option Code	Reference page
Cable exit direction (Right)	A1	See P.5, P.14
Cable exit direction (Bottom)	A2	See P.5, P.14
Cable exit direction (Left)	А3	See P.5, P.14
Actuator's pigtail cable length change	AC1.5	See P.5, P.14
Cable (air fitting) in opposite position	CVR	See P.5, P.14
With air fitting	VC	See P.5, P.14
With wiring collar	WCS	See P.5, P.14

① Cable Length <per axis *1>

Type	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) to X10 (10m)
Specified length	X11 (11m) to X15 (15m)
	X16(16m) to X20(20m) *2
	R01(1m) to R03(3m)
	R04 (4m) to R05 (5m)
Robot cable	R06 (6m) to R10 (10m)
	R11(11m) to R15(15m)
	R16(16m) to R20(20m) *2

Cable between actuator and controller.

Actuator Specifications

Item

Positioning repeatability Lost motion

Allowable dynamic thrust load *1

Allowable dynamic load moment *1

- *1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.
- *2 When Actuator's pigtail cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

B-axis (wrist swing)

±0.015 deg.

0.06 degrees

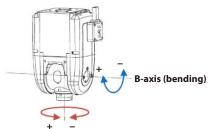
Stepper motor + timing belt

Description

450N

4.2N·m 2.8kg

T-axis (wrist rotation)


±0.15 deg.

0.4 degrees

2.8N·m

Stepper motor + timing belt + bevel gear

Name and Coordinates of Each Axis

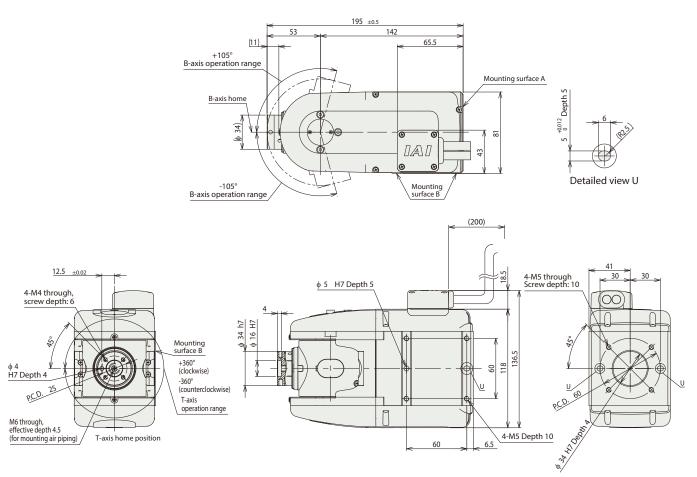
T-axis (turning)

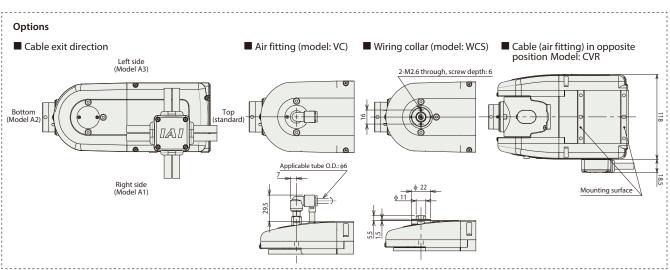
Unit weight	2.8	Bkg
Brake retaining torque *2	2.8N·m	2.81
Ambient operating temperature/humidity	0~40°C, 85% RH or less (Non	-condensing)
*1 Using the unit with a load exceed	ling the values above leads to redu	ıced service life a

Drive system

ove leads to reduced service life and/or damage.

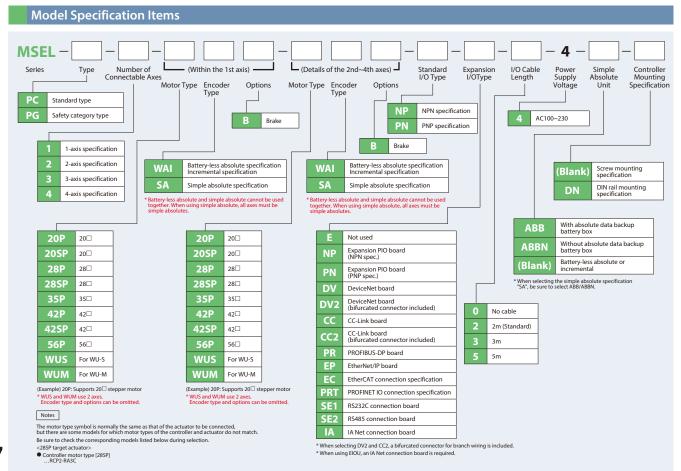
^{*2} Equipped with brake as standard.




Dimensions

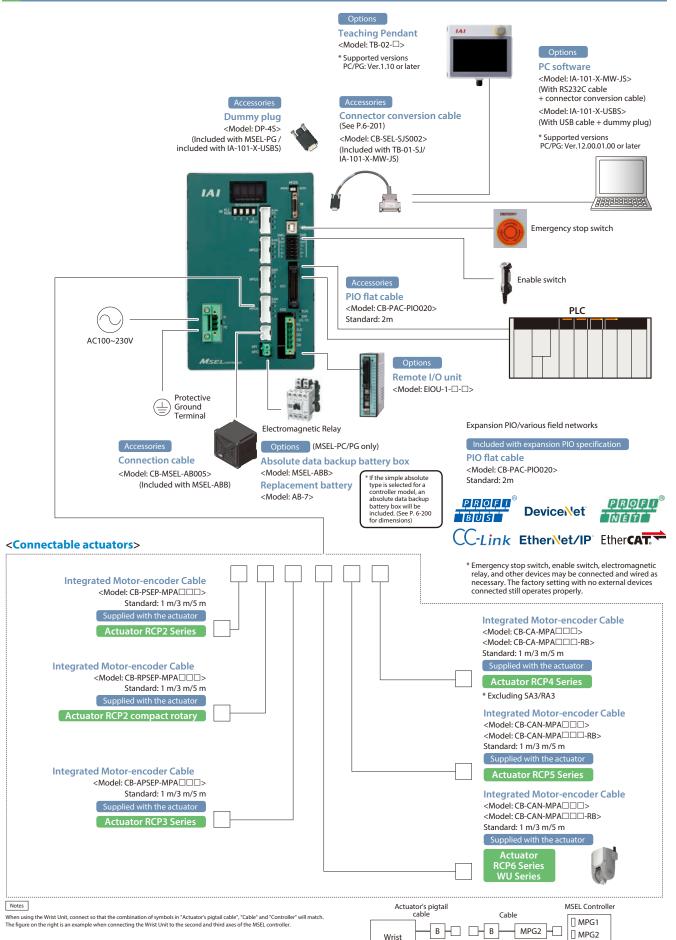
CAD drawings can be downloaded from our website. www.intelligentactuator.com

Name	External view	Max. number of	Power supply			Control			Maximum number of	Reference
Name	external view	connectable axes		Positioner	Pulse-train	Program	Networl	k * selection	positioning points	
MSEL-PC/PG		4	Single phase 100 to 230 V AC	-	_	•	DeviceNet EtherCAT.	CC-Link EtheriNet/IP	30000	See P.15


Please contact our sales representative for control using expanded motion control with the XSEL-RA/SA controller. (See P. 19)

List of Models

Program controller enabling operation of RCP6/RCP5/RCP4/RCP3/RCP2 Series actuators. One MSEL controller can handle various forms of control with up tp 4-axis.


Type name			PC	PG	
	Name		Standard type	Safety category type	
Max. number of controlled axes			4		
No. of positions			30,000 points		
Power			Single phase 100 to 230V AC		
Safety category			В	3 *1	
Standard price Increme		1-axis	-	-	
	Battery-less Absolute	2-axis	1		
	Incremental	3-axis	-	- -	
		4-axis	-	-	
	<i>a</i> : 1 1 1 .	1-axis	-	-	
		2-axis	-		
	Simple absolute	3-axis	-	-	
		4-axis	-	-	

^{*1:} To comply with the safety category, the customer will need to install a safety circuit outside the controller.

System Configuration

Unit

MPG3

MPG4

MPG3

www.intelligentactuator.com

XSEL-RA/SA expanded motion control function (equipped as standard)

- 1. Interpolation command of Cartesian Robot + Wrist Unit possible
 - (Note) It is not possible to interpolate between an actuator directly connected to XSEL and an actuator connected to the controller on the network.
- 2. What to prepare
 - (1) XSEL-RA/SA controller (equipped with expanded motion function as standard)
 - (2) MECHATROLINK-III dedicated cable (to be prepared by the customer)
 - (3) MCON-C, P/A/D/SCON-CB as needed (MECHATROLINK-III option selected)

XSEL-RA/SA (main application section V1.10 or later)

XAXS 11010 : Axis pattern setting for 1, 3 and 4 axes

: 1, 3 and 4 axes moved to position No. 20

Interpolation commands in SEL language are possible **XSON** : Servo on for 1, 3 and 4 axes **XMVL** Up to 32 axes can be connected MECHATROLINK-III dedicated cable (to be prepared by the customer) Connectable controllers MCON-C PCON-CB MCON Up to 8 axes x 2 units can be connected PCON-CB (MECHATROLINK-III (MECHATROLINK-III option selected) SCON-CB option selected) ACON-CB DCON-CB (MECHATROLINK-III option selected) Wrist Unit/ Single Axis/Cartesian Robot (all 32 axes connectable) Single Axis/Cartesian Wrist Unit Wrist Unit

(for 2 axes)

IAI America, Inc.

(for 2 axes)

Headquarters: 2690 W. 237th Street, Torrance, CA 90505 Chicago Office: 110 E. State Pkwy, Schaumburg, IL 60173

Robot (up to 6 axes)

Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

www.intelligentactuator.com

The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI (Shanghai) Co., Ltd.

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China

IAI Robot (Thailand) Co., Ltd.

825 Phairojkijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand

^{*} Please contact our sales representative for Wrist Unit control using expanded motion control with the XSEL-RA/SA controller.